ASTRA 2023 18 - 20 October 2023

ESA-ESTEC, Noordwijk, the Netherlands

Marek Wiertel Mechanical Engineer marek.wiertel@piap-space.com

TITAN – DEVELOPMENT OF SELF-LIFTING MANIPULATOR FOR ON-ORBIT SERVICING AND DEBRIS REMOVAL

Agenda

- PIAP Space company
- Introduction
- Architecture overview
- Analyses
- Design overview
- Tests
- Summary
- Questions

PIAP Space technologies

- Robotic Arm TITAN
- LARIS Gripper
- Standard Gripping Fixture
- Multipurpose Gripper
- Force Torque Sensor
- Vision System
- MGSE

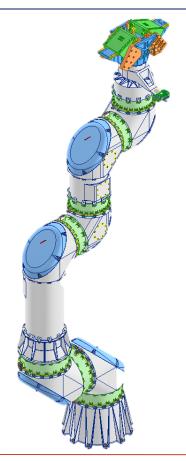
TITAN BACKGROUND

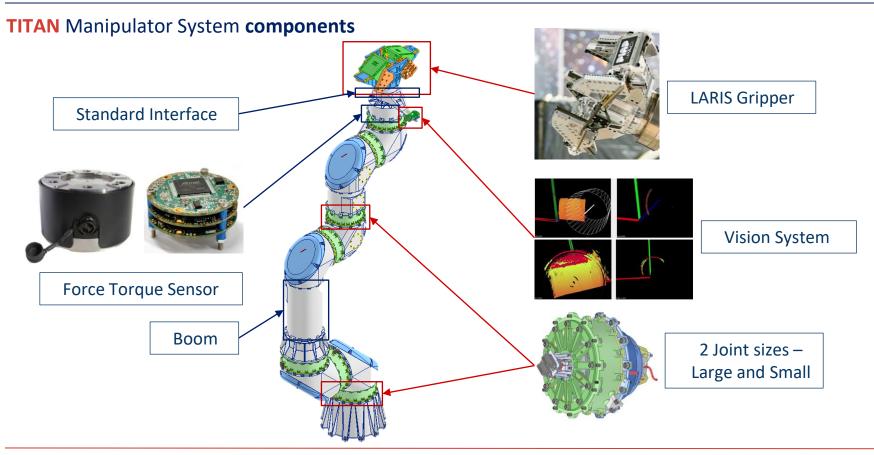
TITAN - "Robotic Arm Development for On-Orbit Servicing Operations" is a European Space Agency project lead by PIAP Space company dedicated to advance the technology of a space manipulator to **TRL 6**.

One of the distinguishing features of TITAN is a **self-lifting capability**, which significantly facilitates onground testing.

Reference mission scenarions for **TITAN** Manipulator:

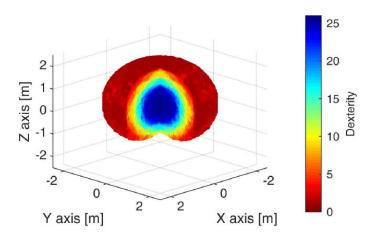
- Cooperative and non-cooperative, prepared and unprepared small debris removal,
- Cooperative and non-cooperative, prepared and unprepared servicing e.g. components repair, providing fuel, replacing a battery.

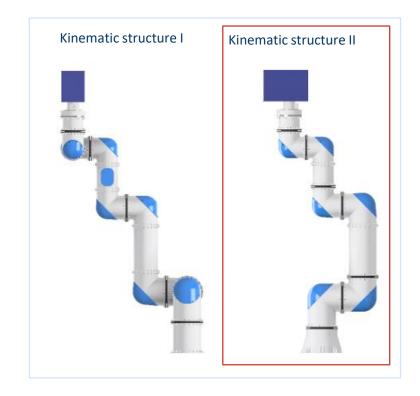

As the most demanding task was considered capturing of the **non-cooperative unprepared satellites**.



TITAN Manipulator overview

Parameter	Value	
Configuration	7 DoF	
Length	1.8 m	
Force/torque capability (0g)	20 N/ 20 Nm	
1st mode (hard-mounted)	>200 Hz	
Payload (Og)	1000 kg	
Payload (1g)	1 kg	
Max velocity (Cartesian)	10 cm/s 5 deg/s	
Positioning accuracy (2 sigma)	5 mm 0.2 deg	
Joint max velocity	5 deg/s	
Joint max repeatable torque	372 Nm (Large) 176 Nm (Small)	


System architecture

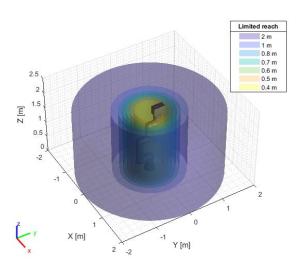

Kinematics analysis

Advantages of selected kinematic structure – Kinematic structure II:

- High dexterity near manipulator base,
- Compact stowed position,
- Lower mass lower loads acting on joints in onground case.

Analysis

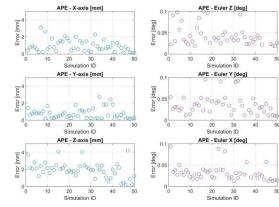
Load cases:

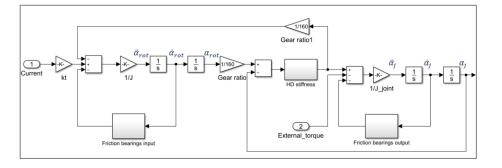

- On-orbit case 20 N of force and 20 Nm of torque applied at manipulator's tip
- On-orbit case on-orbit trajectories
- On-ground case self-lifting capability during tests
- Velocity analysis tip velocity of 0.1 m/s and 5 deg/s ensured in 91% of manipulator configurations

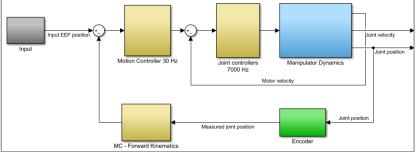
Structural analysis

- Random vibration,
- Sine vibration,
- Static,
- Quasi-Static Loads,
- Thermoelastic,
- Shock.

Case	Torque range [Nm]	
On-orbit continuous torque	~ 2.5 – 7	
On-orbit peak torque	~ 20 – 60	
On-ground torque (in limited workspace)	~ 0.1 - 210	

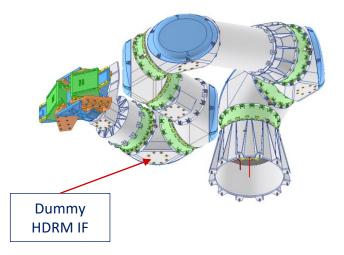

Copyrights PIAP Space

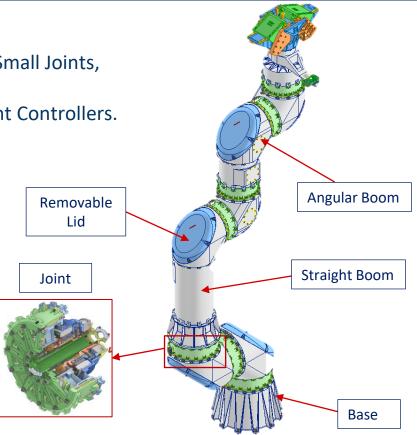

Positioning accuracy analysis


Accuracy analysis of error parameters according with ECSS-E-ST-60-10C.

Error type	Linear error [mm]	Angular error [deg]
Absolute Performance Error (APE) for 95% of trajectory time	< 5 mm	< 0.1 deg
Absolute Knowledge Error (AKE) for 95% of trajectory time	< 0.6 mm	< 0.05 deg
Repeatability Error *	< 1.7 mm	< 0.1 deg

* Repeatability error is defined as deviation from the mean error computed for a set of samples (N=10) taken at the same desired position.

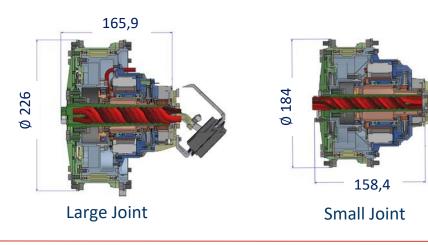


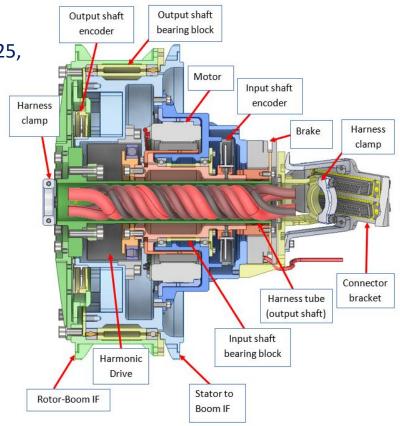

On-orbit trajectories - APE not exceeded for 95% of time

Design overview

Mechanical design:

- Modular design 2 sizes of joints: 3 Large and 4 Small Joints,
- Scalable joints and booms,
- Booms with interfaces for dummy HDRM and Joint Controllers.

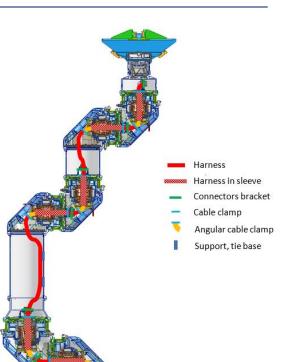




Joint design overview

Joint components:

- BLDC hollow-shaft motor TQ RoboDrive ILM 115x25,
- Harmonic Drive gear CPL-32 A, CPL-25 A,
- Electromagnetic brake,
- 2x encoders Netzer DS-90, DS-130,
- 2x bearings pairs back-to-back configuration,
- Joint Controller.


Design overview

Electronics design:

- Joint Controller developed by CBK PAN,
- Harness CAN bus, power supply, temperature sensing, heaters and safety wire (grounding),
- Thermal Control System developed by Spacive, consists of heaters, temperature sensors, coatings and MLI,
- **EGSE** Robotic Arm Controller (RAC) board, 3kW power supply for the robotic arm actuators, PC.

Control and Software design:

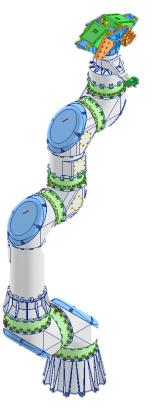
- **Robotic Arm Controller (RAC)** data exchange between the MC and actuators via CANopen, protection functions.
- Motion Controller (MC) Manipulator control e.g. trajectory planning, collision avoidance, control algorithms developed by CBK with usage of MATLAB/Simulink environment and implemented by PIAP Space using automatic code generation tools.

Tests

TITAN test campaign includes:

- Functional tests joint-level tests, manipulator-level tests of tracking and capture of a dummy satellite with LAR, accuracy verification with CMM.
- Performance tests tests of joint characteristcs e.g. maximum velocity, exerted torque, stiffness and control accuracy.
- Environmental tests:
- Vibration,
- Shock,
- EMC,
- TVAC.
- Life test.

Copyrights PIAP Space


Summary

TITAN Manipulator Engineering Model **design and analysis phase has been closed**. Currently mechanical components are being manufactured and software implementation is in progress. It is planned that EM **tests will start in the last quarter of this year**.

TITAN Manipulator features:

- TRL 6,
- Self-lifting capability,
- Modularity and scalability of design,
- Reach of 1.8 m,
- Kinematic redundancy with 7 DoF,
- High loads capability,
- High accuracy.

LET YOUR NEXT MISSION

BE OUR COMMON SUCCESS

We look forward to hearing from you

Marek Wiertel Mechanical Engineer marek.wiertel@piap-space.com

> (+48) 22 874 03 93 www.piap-space.com

Copyrights PIAP Space